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for h = 5 or 10, by subtracting 0.55 F2(cal.) of the 
twin component (5n, k, - l - n ) .  The twinning factor 
of 0.55 was arrived at by trial and error; I estimate 
its standard uncertainty at about 0.02. After correc- 
tion, two reflections showed slightly negative values 
of F2; these were included in the refinement. The 
weights of the adjusted reflections were reduced by 
the factor ¼ for h =0  and by ~6 for h =5 or 10 - 
unnecessarily, probably, since the final model shows 
nearly as good agreement for the adjusted reflections 
as for the others. 

Final least-squares refinement led to an R of 0.0232 
for 668 reflections (two had been removed because 
their twin mates were not recorded). During the last 
cycles, the 44 reflections with sin 2 0/A2->1.78 ( 0 -  > 
71.5 ° for Mo radiation) were given zero weight since 
several of them showed large residuals suggesting that 
the 0-20 scan range had not encompassed the entire 
Koq-Kot 2 doublet; if these reflections are deleted 
from the R index, it becomes 0.0217. The GOF for 
626 reflections is 1-63, but is artificially small because 
of the reduced weights assigned to the twinned' reflec- 
tions. Refinement was by full-matrix minimization of 

2 2 Y. w ( F 2 - F o )  , with w=[2Fotr(Fo)] -2. 
Attempts were made to locate the H atom, with no 

success: difference maps (with various sin 0/A cut- 
offs) showed no clear peak, and refinement of an 
isotropic B for an H atom placed in its logical site 
at 0, 0, ½ (NMKSS) led to an increase to over 10.0. 
NMKSS reported similar difficulties in locating the 
H atom. The problem of locating the H was probably 
exacerbated by rather severe extinction effects (see 
SUP 42832). 

Table. 1. Parameters of the V atom, space group C2 /m 

The Ui/s are matrix elements, with units ,~2. 
x 0"26608 (3) Ull 0"00607 (5) 
y 0 /./22 0.00601 (4) 
z 0-23373 (3) U33 0.00582 (4) 

UI3 0-00053 (3) 

The final parameters are given in Table 1.* They 
are more precise, by factors of 5 to 10, than those 
reported by NMKSS for the Cm model; moreover, 
the U o values are not only more isotropic than those 
of NMKSS but, of course, are identical for all V 
atoms. The general description of the structure is 
unchanged. 

NMKSS noted that their refinement of this struc- 
ture was probably hampered by the presence of twins 
and suggested that these twins were 'less than 1 ~m 
in width'. The sample had been ground into a sphere 
0.178 (3) mm in diameter; that the twins could have 
survived intact this grinding is evidence that the twin- 
ning was very intimate. It is somewhat surprising, 
then, that the twin component was a minor - rather 
than an equal - contributor to the diffraction pattern. 

* A list of observed and calculated structure factors has been 
deposited with the British Library Document Supply Centre as 
Supplementary Publication No. SUP 43937 (4 pp.). Copies may 
be obtained through The Executive Secretary, International Union 
of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. 
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Abstract 
A technique is given for finding partial DSC vectors 
appropriate to crystals with more than one atom per 
lattice site. The DSC lattice is made up of vectors 
that represent displacements of one crystal with 

* Now at Department of Materials Science and Engineering, 
Massachusetts Institute of Technology, Cambridge, MA 02139, 
USA. 

respect to the other that leave the boundary structure 
shifted, but not complete. A new, rapid method for 
finding the step vectors associated with perfect DSC 
dislocations is described. Partial DSC vectors and 
step vectors for perfect DSC dislocations in 
hexagonal close-packed crystals are determined. The 
availability of reactions between lattice partial dislo- 
cations and grain boundaries in hexagonal close- 
packed crystals is also assessed. 
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Introduction 

Geometrical models of the structures of grain bound- 
aries have received a great deal of attention since the 
early 1970's, with considerable emphasis being placed 
upon understanding the principles which govern 
structure, and the ways in which structure influences 
the grain-boundary properties (Smith & Pond, 1976; 
Sutton, 1984). Grain-boundary geometry has been 
described in terms of the coincidence-site lattice 
(CSL), and its generalization called the O lattice 
(which is the lattice of possible origins of the transfor- 
mation which produces crystal 2 from crystal 1). Also 
of importance in describing the grain-boundary 
geometry is the so-called DSC lattice, which is a 
lattice made up of vectors which represent 
displacements of one crystal with respect to the other 
which leave the boundary structure shifted, but 
complete: DSC vectors thus define the allowable 
Burgers vectors of perfect grain-boundary disloca- 
tions. The existence of DSC dislocations in high-angle 
grain boundaries, conserving structures of high lattice 
coincidence through small changes in misorientation, 
has been confirmed by various transmission electron 
microscope investigations; most of these observations 
were made in materials with cubic crystal structures 
(Bollmann, Michaut & Sainfort, 1972; Clark & Smith, 
1978; Sun & Balluffi, 1982). The behavior of grain 
boundaries, in many cases, has also been linked to 
the properties of grain-boundary dislocations, 
although this frequently requires that further 
geometrical concepts be brought into consideration. 

Two important geometrical features have been 
identified beyond the usual CSL, O lattice and DSC 
lattice: the first of these is the step vector associated 
with a DSC dislocation, which is used in determining 
the height of the step in the grain-boundary plane 
that is associated with the core of a grain-boundary 
dislocation. The definition of the step vector and an 
extensive description of its properties was given by 
King & Smith (1980) and step vectors for grain- 
boundary dislocations in cubic materials were tabu- 
lated by King (1982). Quantitative confirmation of 
the importance of step vectors in determining the 
behavior of grain boundaries has been given by 
Fukutomi, Kamijo & Horiuchi (1986). The second 
important feature is the ability of grain boundaries 
to absorb or transmit crystal-lattice dislocations dur- 
ing deformation or grain-boundary migration: this is 
always possible for perfect crystal-lattice dislocations, 
which leave only DSC dislocation residues in grain- 
boundary planes, but for lattice partial dislocations 
the reactions may be impeded by the fact that non- 
DSC residues may be produced, as discussed by King 
& Chen (1984) and Chen & King (1984) for cubic 
crystals. 

Interest in the structure and behavior of grain 
boundaries in non-cubic crystals is currently increas- 

ing, with some emphasis on the h.c.p, structure. 
Various attempts have been made to provide tech- 
niques for determining the basic geometrical param- 
eters, such as the CSL and DSC lattice vectors, for 
these boundaries (Bonnet, Cousineau & Warrington, 
1981; Bleris, Nouet, Hagege & Delavignette, 1982), 
but these techniques have proven to be flawed (Chen, 
1986). Definitive methodologies have, however, 
recently become available (Grimmer & Warrington, 
1987). An important extension to the familiar work 
on cubic structures has been the postulation of 'con- 
strained' CSL structures, where three-dimensional 
CSL's can only be formed if the value of ( c / a )  2 is 
held at a rational value: boundary structures related 
to these CSL's have recently been observed by Chen 
(1986). The necessary geometry for describing the 
structures of the grain boundaries is therefore in 
place, but the 'further' geometry needed in order to 
correlate structure with many types of behavior is 
not. It is the purpose of this paper to indicate the 
appropriate techniques for determining this informa- 
tion, and to provide tabulations of the data.* 

In addition to the features described above, the 
possibility of a new class of dislocations in the grain 
boundaries of h.c.p, materials arises, because of the 
fact that the structure has two atoms per lattice site. 
This provides the possibility of dislocations which 
cause translations equivalent to shifts between 
different atom sites, which are not shifts between 
identical lattice sites, as suggested by Smith (1980). 
Such dislocations would have Burgers vectors which 
can be summed to form DSC vectors in the same way 
that lattice partial Burgers vectors can be summed to 
form perfect ones: we therefore refer to these defects 
as 'partial DSC' dislocations, or PDSC dislocations, 
and it is of interest to determine the possible Burgers 
vectors for these defects. 

Partial DSC Burgers vectors 

For h.c.p, metals there are two atoms per lattice site 
in the primitive unit cell: one is at the latice site [000] 
and the other one is at the non-lattice site [5, ½, ½]. If 
we call the unit cell containing an atom at [2,1, ½] the 
positive unit cell and denote it as (+) ,  there is an 
equivalent unit cell which is rotated 60 ° about [001] 
relative to the positive unit cell and containing an 
atom at the non-lattice site [~, 3, ½]" we call this the 
negative unit cell and denote it as ( - ) .  The ( + )  and 
( - )  unit cells can transform to each other by either 

* Lists of partial DSC vectors, CSL, DSC and step vectors, and 
a summary of geometrically allowed transmission reactions, which 
are the complete versions of Tables 1, 2, and 3, respectively, have 
been deposited with the British Library Document Supply Centre 
as Supplementary Publication No. SUP 43936 (70pp.). Copies 
may be obtained through The Executive Secretary, International 
Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, 
England. 
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a rotation of 60 ° about [001] or a translation by the 
vector of ](120) type. Three types of partial DSC 
vectors (PDSC's) are formed by: (1) joining the lattice 
sites in crystal 2 to non-lattice sites in crystal 1 called 
PDSC1, (2) joining the non-lattice sites in crystal 2 
to lattice sites in crystal 1 called PDSC2, (3) joining 
the non-lattice sites in both crystals called PDSC3. 
Crystals 1 and 2 can each be arranged with either a 
( + )  or a ( - )  unit cell. The possible Burgers vectors 
of grain-boundary dislocations then become more 
varied, since the Burgers vectors may not only belong 
to the set of DSC lattice vectors as in b.c.c,  and f.c.c. 
crystals but may also be PDSC's. Burgers vectors of 
the PDSC types described above may or may not be 
equal to DSC vectors, depending upon the structure 
of the CSL. They have the effect of transforming the 
structure of the CSL if they are not equal to the DSC 
vectors, and may not necessarily be distinct from the 
DSC vectors in every structure produced by such 
transformations. Examples of PDSC Burgers vectors 
are shown in Fig. 1, along with the types of transfor- 
mation of the bilattice structure that they can produce. 
Fig. l (a )  shows the various DSC and PDSC Burgers 
vectors for the ,~ = 7 CSL in the reference structure 
referred to as ( + ,  + ), where both of the crystals are 
in the ( + )  orientation with respect to an origin at a 
coincident atom site. Displacement of crystal 2 by a 
PDSC1 vector yields the structure shown in Fig. l (b) ,  
which is refered to as ( - ,  +) ,  denoting the orienta- 
tions of crystals 1 and 2 with respect to origins at a 
coincident atom site. Relative displacements of one 
crystal from the ( + ,  + ) structure by PDSC3 vectors 
yield the ( - , - )  structure shown in Fig. 1(c): note 
that this structure is a mirror image of the ( + , + )  
structure, so that dislocations of the PDSC3 type may 
separate regions of grain boundary of identical 
energy. Note also that for the ( - , + )  structure, the 
PDSC3 Burgers vectors are identical to the DSC 
Burgers vectors, so they are structure-conserving 
translations for this case. For starting configurations 
with lower symmetry than those shown here (i.e. with 
no atom site coincidences) there will be no 'accidental 
equalities' of the vectors or the structures associated 
with them. 

A similar type of defect has been observed in 
diamond-cubic-structured germanium (Bacmann, 
Silvestre, Petit & Bollmann, 1981) and a related type 
of dislocation has been observed in twist grain bound- 
aries in magnesium oxide, where the Burgers vector 
defines a shift between the two interpenetrating f.c.c. 
lattices decorated with different chemical species 
(Sun & Balluffi, 1982). 

Partial DSC vectors can be deduced by analytical 
methods. There are three types of-PDSC associated 
with transformations between different kinds of 
boundaries which may be denoted as structure (+, 
+), ( + , - ) ,  ( - ,  +), and ( - , - )  depending on the 
orientations of the unit cells of the two crystals. The 

three types of PDSC are always describable as DSC 
vectors added to a PDSC vector within the unit cell 
of the DSC lattice denoted as Pdsc; just as the non- 
lattice sites of the h.c.p, structure can be described 
as lattice vectors added to a non-lattice vector [2, ~, ½] 

1 2 or [3, 3, ½] within the unit cell. 
(1) PDSC1 are vectors joining lattice sites of lattice 

2 to non-lattice sites of lattice 1, hence PDSC1 can 
be written as: 

PDSC1 = (xl + ti) - Rx2 

= (x, - Rx2) + ti 

= D S C +  t, (1) 

where xl and x2 are the lattice vectors of lattice 1 and 
lattice 2 respectively, t~ (i = 1, 2) are the non-lattice 

C +, * ) ~ . . .  

[0101 ~,~ . [ 0 1 0 ~  

(b) 

b J  

~z 
~J 

CRYSTAL I - 0 • 
CRYSTAL 2- O [] 

(a) 

( m B 

(c) 

Fig. 1. Examples of the partial DSC Burgers vectors, and the 
structural transformations associated with them, for the ,~ = 7 
exact coincidence system in hexagonal close-packed crystals. 
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Table 1. Partial D S C  Burgers vectors for h.c.p, crystals 

The 'System' column gives the value of ,~, rotation axis and rotation angle 
(°). T h e  P D S C  vectors are given as columns, with each element multiplied 
b y  2,~, in order to provide integer values. The vectors are listed according 
to the types of  coincidence structure (choice of  origin) in which they are 
found, and where they are equal to the DSC vectors they are listed merely 
as ' D S C ' .  

(+,+)(-,+)(+,+)(+,-)(+,+)(+,-)(-,+)(-,-) 
(+,-)(- ,-)(- ,+)(- ,-)  

System Pdscl Pdscl Pdsc2 Pdsc2 Pdsc3 Pdsc3 Pdsc3 Pdsc3 
(a) (c /a)  2 = any 

7 - 8  2 - 8  2 2 D D - 8  
[001]/21.79 - 1 0  - 8  - 1 0  - 8  - S S - 1 0  

21 21 21 21 0 C C 0 

13 4 - 1 0  4 - 1 0  - 1 0  D D 4 
[001]/32.20 - 1 0  - 1 4  - 1 0  - 1 4  - 1 4  S S - 1 0  

39 39 39 39 0 C C 0 

19 - 1 4  2 - 1 4  2 2 D D - 1 4  
[001]/13.17 - 1 6  - 1 4  - 1 6  - 1 4  - 1 4  S S - 1 6  

57 57 57 57 0 C C 0 

31 - 8  14 14 - 8  D 14 - 8  D 
[001]/17.90 - 2 2  - 8  - 8  - 2 2  S - 8  - 2 2  S 

93 93 93 93 C 0 0 C 

37 - 2 0  2 - 2 0  2 2 D D - 2 0  
[001]/9.43 - 2 2  - 2 0  - 2 2  - 2 0  - 2 0  S S - 2 2  

111 111 111 111 0 C C 0 

43 16 - 1 0  - 1 0  16 D - 1 0  16 D 
[001]/15.178 - 1 0  - 2 6  - 2 6  - 1 0  S - 2 6  - 1 0  S 

129 129 129 129 C 0 0 C 

49 4 - 2 2  4 - 2 2  -22  D D 4 
[001]/16.43 - 2 2  - 2 6  - 2 2  - 2 6  - 2 6  S S - 2 2  

147 147 147 147 0 C C 0 

(b) ( c / a ) 2 = ~  

9 6 -6 2 -2 8 -2 2 -8 
[100]/83.62 12 - 1 2  4 - 4  16 - 4  4 - 1 6  

- 3  3 - 7  7 - 1 0  - 2  2 10 

12 0 0 - 8  8 4 - 4  4 - 4  
[100]/48.19 0 0 - 1 6  16 8 - 8  8 - 8  

12 - 1 2  8 - 8  - 1 0  - 2  2 10 

16 - 3 2  32 32 - 3 2  D 32 - 3 2  D 
[210]/75.52 8 40 40 8 S 40 8 S 

- 1 2  - 1 2  - 1 2  - 1 2  C - 1 2  - 1 2  C 

17 - 3 4  34 34 - 3 4  D 34 - 3 4  D 
[210]/65.68 - 1 4  20 20 - 1 4  S - 1 6  - 5 0  S 

- 3  - 3  - 3  - 3  C -18  - 1 8  C 

19 - 3 8  38 38 -38  D 38 -38  D 
[210/54-62 - 1 0  28 28 - 1 0  S 40 2 S 

3 3 3 3 C -12  -12  C 

21a - 6  6 10 - 1 0  - 2  -16  16 2 
[100]/58.41 - 1 2  12 20 - 2 0  - 4  - 3 2  32 4 

- 9  9 1 - 1  4 - 1 0  10 - 4  

21b - 6  6 2 - 2  2 - 8  8 - 2  
[100]/25.22 - 1 2  12 4 - 4  4 16 16 - 4  

9 - 9  11 -11  - 1 0  - 2  2 10 

23 - 4 6  46 46 - 4 6  D 46 - 4 6  D 
[210]/42.34 - 1 4  32 32 - 1 4  S 44 - 2  S 

- 1 5  -15  - 1 5  - 1 5  C -12  - 1 2  C 

24 36 0 - 3 2  8 4 - 4  4 - 4  
[841]/82.82 0 0 - 1 6  -32  - 1 6  16 - 1 6  16 

6 - 2 4  - 1 6  4 - 1 0  - 1 4  14 10 

27 - 6  6 2 - 2  2 - 8  8 - 2  
[310]/61.22 - 3 0  30 10 - 1 0  10 - 4 0  40 - 1 0  

3 - 3  17 -17  - 1 0  - 1 4  14 10 

28 4 - 4  4 - 4  - 4  D D 4 
[100]/73.40 8 - 8  8 - 8  - 8  S S 8 

- 6  6 - 6  6 6 C C - 6  

vectors, tl = [2, ½, ½] for the ( + ,  + )  and ( + , - )  struc- 
tures, and t2 = [~, 2, ½] for the ( - ,  + ) and ( - , -  ) struc- 
tures. 

(2) PDSC2 are vectors joining non-lattice sites of  
lattice 2 to lattice sites of  lattice 1, hence PDSC2 can 

be written as: 

PDSC2 = ( x ~ ) -  R(x2 + ti) 

= (xl - Rx2) - Rti 

= D S C +  ( - g t , )  (2) 

where tl = [2, ], ½] for the ( + , + )  and ( - , + )  struc- 
tures, and t2 = [1, 2, ½] for the ( + , -  ) and ( - , -  ) struc- 
tures. 

(3) PDSC3 vectors join non-lattice sites of  lattice 
2 to non-lattice sites of  lattice 1, and hence PDSC3 
can be written as: 

PDSC3 = (x~ + t , ) -  R(x2 ÷ tj) 

= (x~ - x2) + ( t, - Rtj ) 

= DSC + ( t , -  Rtj) (3) 

where both t, and tj = [2,1, ½] for the ( + ,  + ) structure 
and both ti and tj = [~, 2, ½] for the ( - , - )  structure. 
ti = [2, ], ½] and tj = [], 5, ½] are for the ( + , -  ) structure; 
interchanging the roles of  ti.and b gives the ( - , + )  
structure. 

The vectors ti, -Rt~, and t~- Rtj are then resolved 
in the coordinates of  the DSC lattice. Assuming that 
the components  in DSC coordinates are p, q, r, the 
Pdsc vectors in the unit cell of  the DSC lattice can 
be written: 

Pdsc = P D S C -  [Int (p)DSC1 + Int (q)DSC2 

+ Int (r)DSC3] (4) 

where Pdsc is the partial DSC within the unit cell of  
the DSC lattice, PDSC are any partial DSC vectors, 
DSC1,  DSC2 and DSC3 are the basis vectors of  the 
DSC lattice, Int (p), Int (q),  and Int (r) are the three 
largest integers which are not greater than p, q, r, 
respectively. 

The three types of  Pdsc vectors which may be 
associated with the four possible kinds of  structure 
are listed in Table 1. 

Step vectors 

A quick method of  searching step vectors associated 
with each DSC basis has been developed,  and this 
method has a significant advantage over the one pro- 
posed by Brokman (1981) in that it uses a computer  
program for which the input data consist only of  the 
known coincidence geometry. In particular, it 
requires knowledge  of  the rotation matrices leading 
to coincidence misorientations,  along with the CSL 
and DSC vectors: no knowledge  of  the internal posi- 
tions of  atoms in the CSL is required, as is the case 
for Brokman's technique. The necessary data are 
therefore available using the techniques given by 
Grimmer & Warrington (1987). The relationship 
between step vectors and DSC vectors is shown in 
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Fig. 2 and expressed as: 

S = DSC + RX2 (5) 

where R is a rotation matrix corresponding to the 
exact coincidence orientation, and X2 is a lattice 
vector in lattice 2, expressed in that coordinate system. 
.We search for lattice vectors [h,k,l] of lattice 2 that 
sum with DSC vectors to give three integer lattice 
vector components in the step vector, since the step 13 
vector must be a member of lattice 1. The range of [001]/32.20 

this search is 0 < h < x/Z, -x /Z  _< k <_ x/Z, -x /E  <- 1 - 19 

x/Z, where E is the ratio of  the volumes of the unit [001]/13.17 
cells of the CSL and the crystal, as usual. If there is 
a vector of  lattice 2 satisfying (5), the step vector 31 

[001]/17.90 
associated with the DSC vector can then be expressed 
within the unit cell of  the CSL by the following 37 
procedures: [001]/9.43 

(1) Resolve the step volume, S, into components 43 
of  the CSL bases. In other words, we can write: [001]/15.178 

S = r C S L 1  + sCSL2 + t f S L 3  ( 6 )  49 
[001]/16.43 

where CSLt, C S L 2 ,  and C S L  3 are  the bases of  CSL, 
and r, s and t are the components of  the step vector. 

(2) The step vector in the unit cell S' then can be 
written: 

S '=  S - [ I n t  (r)CSL1 + Int (s)CSL2+ Int (t)CSL3] 12 [100]/48.19 

(7 )  16 

where Int(r) ,  Int(s )  and Int(t)  are the largest [210]/75.52 

integers which are not greater than r, s and t. 17 
(3) The smallest step vector can be selected from [210]/65.68 

the eight equivalent step vectors in the unit cell. 
19 

For the coincidence systems obtained by applying [2101/54-62 

Hag6ge & Nouet's method, the CSL and DSC bases 
deduced by Bonnet's method and Grimmer's theory, 214 

[100]/58.41 
and step vectors determined by our technique are 
listed in Table 2. 21b 

Step vectors cannot be defined for partial DSC [1001/25.22 
dislocations, since they are not structure-preserving 23 
defects. [210]/24.34 

CSL z 

DSC 

S 
J 

CSL,, 
© 

Fig. 2. Illustrating the technique used to find step vectors when 
the DSC and CSL vectors are known: S is the step vector, which 
must be a vector of  lattice 1, and X2 is a vector of  lattice 2. 

Table 2. CSL, D S C  and step vectors for  h.c.p, crystals 

T h e  ' S y s t e m '  c o l u m n  has  the  s a m e  m e a n i n g  as  in T a b l e  1, a n d  t h e  v e c t o r s  
are  a g a i n  g i v e n  as  c o l u m n s ,  but  the  e l e m e n t s  are  m u l t i p l i e d  o n l y  b y  ,~. T h e  
first g i v e n  s t ep  v e c t o r  c o r r e s p o n d s  to  the  first g i v e n  D S C  v e c t o r ,  e t c  

S y s t e m  
(a) (c/a)2=any 

7 
[001]/21.79 

(b) (c/a) 2 = 
9 

[100]/83.62 

24 
[841]/82.82 

27 
[310]/61.22 

28 
[100]/73.40 

29 
[100]/67.71 

C S L  D S C  Step  

0 2 l 2 -3  0 l 0 0 
0 -1 3 -1 -2  0 1 -1 0 
1 0 0 0 0 7 0 0 0 

0 3 4 - 4  3 0 2 -1 0 
0 - i  3 -3  -1 0 1 1 0 
1 0 0 0 0 13 0 0 0 

0 3 2 3 -5  0 ! 0 0 
0 - 2  5 - 2  -3  0 1 - l  0 
1 0 0 0 0 19 0 0 0 

0 5 1 -5  6 0 - 2  - I  0 
0 6 - 5  - 6  l 0 1 -3  0 
1 0 0 0 0 31 0 0 0 

0 4 7 4 -7  0 1 0 0 
0 -3  4 -3  - 4  0 1 -1  0 
1 0 0 0 0 37 0 0 0 

0 7 1 1 7 0 - 2  - 4  0 
0 1 - 6  - 6  1 0 2 -2  0 
1 0 0 0 0 43 0 0 0 

0 5 3 5 -8  0 -2  4 0 
0 -3  8 -3  -5  0 2 2 0 
1 0 0 0 0 49 0 0 0 

1 1 1 1 6 - 3  0 1 1 
0 2 3 2 3 3 0 2 2 
0 ! - 3  1 -3  -3  -1 -1 -1 

1 2 0 2 6 - 6  0 - 1  - 1  
0 4 0 4 0 0 1 -2  -2  
0 1 3 1 -3  -3  - I  0 0 

2 0 0 0 0 16 -1 -1 -1  
1 2 2 2 6 4 - 2  0 - 2  
0 ! -3  1 -5  2 0 0 1 

2 0 1 0 0 -17 -1 -1 -1 
1 1 - 6  1 -12 -14 2 -1  1 
0 -1  -2  - l  -5  -3  1 0 0 

2 0 1 0 0 19 0 -1 -1 
1 3 - 3  3 4 6 - l  0 0 
0 1 2 1 -5  2 -1 0 - l  

1 0 8 1 - 1 0  - 8  - 2  -1  4 
0 l 16 2 1 -16 -3  - 2  8 
0 -1 5 -2  -1 -5  -1 0 2 

1 1 2 4 l 9 0 0 0 
0 3 5 8 2 -3  1 1 0 
0 3 - 2  1 -5  -3  -2  0 1 

2 0 1 0 0 23 -1 -1 0 
1 4 0 4 3 8 - 1  0 2 
0 1 -3  1 -5  2 1 0 0 

1 2 2 6 - 4  - 2  0 -1  - 2  
2 0 4 0 -8  8 - 2  1 I 

-1  I - 2  -3  - 2  -7  -1  1 1 

3 1 0 - 5  6 -10 - l  -1 -1 
1 3 1 2 3 - 2 3  -1  - 2  0 
0 1 - 3  - 2  -3  - 4  -1 0 -1 

1 2 2 2 - 6  18 - 2  0 2 
0 4 4 4 -12 8 -3  1 4 
0 -3  4 -3  -5  1 1 -1 0 

1 0 2 - 4  3 -11  0 - 2  0 
0 1 5 - 8  6 7 1 - 4  1 
0 4 - 9  -3  - 5  -1 -1 2 1 

Interactions between lattice partial dislocations and 
grain boundaries 

It is well known that a perfect lattice dislocation may 
always dissociate into an integral number of grain- 
boundary dislocations whose Burgers vectors belong 
to the DSC lattice. During this process the total 
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Burgers vector (Bollmann, 1970; Bollmann, Michaut 
& Sainfort, 1972) and step height (King & Smith, 
1980) must be conserved. A lattice dislocation can 
also be transmitted through a grain boundary by 
creating a lattice dislocation in the other grain and 
yielding a residual perfect DSC dislocation in the 
grain boundary. In other words, the transmission 
process is allowed, if the difference between the 
Burgers vectors of the lattice dislocations in each 
grain is a member of the DSC lattice. The processes 
of dislocation absorption and transmission by grain 
boundaries have been discussed in detail by Hirth & 
Balluffi (1973) as well as Pond & Smith (1977) and 
are illustrated schematically in Fig. 3. 

However, during the process of deformation, 
Schockley partial dislocations may glide and/or  
sessile Frank partial dislocation loops may grow 
toward grain boundaries. Alternatively, the grain 
boundaries may migrate toward stationary disloca- 
tions during the processes of recrystallization, grain 
growth and diffusion-induced grain-boundary migra- 
tion (DIGM). The interaction between partial dislo- 
cations and grain boundaries then becomes possible. 
The interactions of lattice partial dislocations with 
grain boundaries in f.c.c, and b.c.c, crystal systems 
have been discussed by King & Chen (1984) and 
C h e n &  King (1984). They found that coincidence 
systems whose ~ values are integral multiples of 3 
exhibit significantly different behavior in the proces- 
ses of partial dislocation absorption and transmission 
from those whose 2 values are not integral multiples 
of 3. This applies for both f.c.c, and b.c.c, crystal 
systems. Lattice partial dislocations are members of 
the DSC lattice only when ,X is an integral multiple 
of 3. In other words, the partial dislocations can only 
be absorbed in the £ = 3 N - r e l a t e d  coincidence 
boundaries, where N is an integer. The transmission 

GRAIN-BOUNDARY PLANE 

DSC [ ~  DISLOCATIO~ 

GRAIN-BOUNDARY PLANE 

/ / 
br 

(a) (6) 

Fig. 3. Illustrating the possible reactions between crystal-lattice 
dislocations and grain boundaries. (a) The absorption of a 
dislocation by dissociation into an integral number of DSC 
dislocations. (b) The transmission of the dislocation leaving a 
DSC residue in the grain-boundary plane. 

of a partial dislocation must always yield a DSC 
residue, and this fact was used to check the 
possibilities of transmission of-partial dislocations in 
those surveys. The results for the transmission of 
partial dislocations show certain patterns which are 
different for ~ = 3 N and ~ ~ 3 N coincidence-related 
boundaries. 

In this research, the same techniques were applied 
to check the processes of absorption and transmission 
of partial dislocations by grain boundaries in the 
h.c.p, crystal system. In the h.c.p, system, the PDSC 
vectors are also the candidate Burgers vectors for 
grain-boundary dislocations; therefore, the lattice 
partial dislocations may be absorbed by dissociating 
into an integral number of DSC and/or  PDSC dislo- 
cations, or transmitted by yielding a PDSC residue. 
In order to avoid this complication, only DSC grain- 
boundary dislocations are considered. 

Thirty-seven lattice partial dislocations were con- 
sidered as participants in the reactions with grain 
boundaries. Their Burgers vectors were of the types 
(~, ~, 0), (4, 2, 0), (2, ½, ½), (2, ~, 1), (2,1, 1), (~, 8, 3) and 
C0, 0,½). 

Absorption reactions 

The 37 lattice partial dislocations were resolved 
into a coordinate system which is defined by the three 
primitive DSC bases, in order to examine whether a 
particular absorption may be available, for all the 
coincidence systems given in Table 2. The results can 
be summarized as follows" 

(1) No partial dislocation absorptions are allowed 
for exact coincidence-related boundaries, or for con- 
strained coincidence-related boundaries with ( c / a )  2 
values being ~, 33 51 ~ ,  ~ ,  ~ ,  27 ~ ,  ~.7, 3_1, 7, 39 13, 20, 10, i]'" 

(2) (0, O, ½) partials can be absorbed in the even 
value constrained coincidence systems associated 
with ( c / a )  2 being ~2, 8, ~. 

(3) (2, ~, 0), (4, ~, 0), (2, ~, ½), (4, 2, ½), and (2, ~, 1) par- 
tial dislocations can be absorbed in the ~ = 3 N con- 
strained coincidence systems associated with ( c / a )  2 
being ]. 

(4) (~, 8,  3)  partial dislocations can also be absor- 
bed in £ = 18 with ( c / a )  2 being 8. 

A useful rule is that lattice partial dislocations 
having Burgers vectors that join lattice sites to non- 
lattice atomic sites may always be absorbed into a 
grain boundary by the formation of PDSC disloca- 
tions. 

Transmission reactl~ons 

The process of transmission is allowed, if the 
difference of the Burgers vectors of the dislocation 
in each grain is a member of the DSC lattice. The 
results are summarized in Table 3. Unlike the results 
for the f.c.c, and b.c.c, crystal systems, there is not a 
simple and reliable predictive rule for the process of 
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Table 3. A summary of transmission reactions produc- 
ing only DSC residues 

We give fourteen different reaction groups, each exhibiting different numbers 
of available reactions of various types. The coincidence systems belonging 
to the reaction groups are also listed below the group descriptions, with the 
appropriate values of c2/a 2 given in parentheses. 

Reaction type 

Number of 
possible 
reactions 

(a) Reaction group 1 
Perfect-~ perfect 18 
Perfect-* partial 0 
Partial ~ perfect 0 
Partial ~ partial 2 
Total 20 

(~): 29, 221a, 221b, 227, 233, 239a, 239b; 33 51 . 18 (i3): 224; (~). 237; (~-): 
213 217, 223a, 229, 231, 235a, 235b, 243, 247, 249a, 249b; (~): 
215b, 239; (~): 219, 223, 233b; (~): 217, ,~27a, 241a, 245b; (t~): 224. 

(b) Reaction group 2 
Perfect ~ perfect 18 
Perfect-~ partial 6 
Partial ~ perfect 6 
Partial ~ partial 2 
Total 32 

(~): 212, 224, 236, 248. 

(c) Reaction group 3 
Perfect ~ perfect i 8 
Perfect-~ partial 6 
Partial ~ perfect 6 
Partial ~ partial 594 
Total 624 

(~): 216, 232, 244. 

transmission of lattice partial dislocations in h.c.p. 
crystals, although, for certain values of (c/a) 2, ~, = 
2 N  and 2 = 3 N  cases may fall into some particular 
reaction group, as illustrated by the results presented 
in Table 3. 

As for the case of  dislocation absorption, trans- 
mission or transformation reactions involving one or 
more lattice partials with site-switching Burgers vec- 
tors always produce PDSC dislocations in the grain- 
boundary plane. 

This work was supported by the National Science 
Foundation, under grant No. DMR-8601433. 
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Abstract 

A new structural family, (Ni,Mg)4,+6Ge2,+lOs~,+l) 
(n = 1, 2, 3, 4, oo), has been identified at atmospheric 
pressure in the NiO-MgO-GeO2 system. Its building 
principle is based on regular intergrowth of  n (001) 
olivine layers (Pnma setting) with one {111} cation- 
deficient rock-salt layer. Alternatively, individual 
structures are shown to contain spinel elements, the 
proportion of  which decreases with increasing values 

0108-7681/87/050422-08501.50 

of n. This new family therefore provides a structural 
transition between the olivine (n = ~ end-member) 
and spinel structure types and may be relevant to the 
high-pressure olivine--> spinel transformation. 

I. Introduction 

During the course of a re-investigation of  the NiO- 
MgO-GeO2 system at atmospheric pressure, a new 

(~ 1987 I n t e r n a t i o n a l  U n i o n  o f  C r y s t a l l o g r a p h y  


